Temperature-induced derepression of tryptophan biosynthesis in a tryptophanyl-transfer ribonucleic acid synthetase mutant of Bacillus subtilis.

نویسنده

  • W Steinberg
چکیده

A tryptophanyl-transfer ribonucleic acid (tRNA) synthetase (l-tryptophan: tRNA ligase adenosine monophosphate, EC 6.1.1.2) mutant (trpS1) of Bacillus subtilis is derepressed for enzymes of the tryptophan biosynthetic pathway at temperatures which reduce the growth rate but still allow exponential growth. Derepression of anthranilate synthase in a tryptophan-supplemented medium (50 mug/ml) is maximal at 36 C, and the differential rate of synthesis is 600- to 2,000-fold greater than that of the wild-type strain or trpS1 revertants. A study of the derepression pattern in the mutant and its revertants indicates that the 5-fluorotryptophan recognition site of the tryptophanyl-tRNA synthetase is an integral part of the repression mechanism. Evidence for a second locus, unlinked to the trpS1 locus, which functions in the repression of tryptophan biosynthetic enzymes is presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biochemical and genetic characterization of a temperature-sensitive, tryptophanyl-transfer ribonucleic acid synthetase mutant of Bacillus subtilis.

A temperature-sensitive, 5-fluorotryptophan (5FT)-resistant mutant of Bacillus subtilis was isolated which forms an altered tryptophanyl transfer ribonucleic acid synthetase [l-tryptophan: sRNA ligase (AMP), EC 6.1.1.2]. The mutant grows well at 30 C but not at 42 C. At the latter temperature, protein and ribonucleic acid (RNA) synthesis are abolished while deoxyribonucleic acid (DNA) synthesis...

متن کامل

Mutational identification of an essential tryptophan in tryptophanyl-tRNA synthetase of Bacillus subtilis.

The strongly conserved single tryptophan residue, Trp92, in Bacillus subtilis tryptophanyl-tRNA synthetase has been mutagenized via site direction singly into Gln, Ala, and Phe. All three mutant enzymes were inactive toward the catalysis of tRNA tryptophanylation. The Trp92----Phe mutant has been subcloned into the high expression plasmid pKK223-3 to yield the recombinant plasmid pKSW-F92. Grow...

متن کامل

Mutants of Escherichia coli with an altered tryptophanyl-transfer ribonucleic acid synthetase.

Fourteen mutant strains of Escherichia coli were examined, each of which requires tryptophan for growth but is unaltered in any of the genes of the tryptophan biosynthetic operon. The genetic lesions responsible for tryptophan auxotrophy in these strains map between str and malA. Extracts of these strains have little or no ability to charge transfer ribonucleic acid (tRNA) with tryptophan. We f...

متن کامل

Tryptophanyl-tRNA synthetase from Bacillus subtilis. Characterization and role of hydrophobicity in substrate recognition.

The tryptophanyl-tRNA synthetase from Bacillus subtilis was purified to homogeneity and characterized. It has an alpha 2 subunit structure and a molecular weight of 77,000. Tryptophanyl-tRNA synthetase does not catalyze any significant proofreading. It activates tryptophan as well as the three fluorinated analogues, DL-4-fluoro-, DL-5-fluoro-, or DL-6-fluorotryptophan (4F-, 5F-, and 6F-Trp), in...

متن کامل

Two essential regions for tRNA recognition in Bacillus subtilis tryptophanyl-tRNA synthetase.

Bacillus subtilis tryptophanyl-tRNA synthetase (TrpRS) is a homodimeric enzyme. A model for its ability to recognize tRNA(Trp) in B. subtilis was proposed by using computer modelling. This was based on the the fact that there is high homology among bacterial TrpRSs [Chen, Jiang, Jin and Wang (2001) Acta Biochim. Biophys. Sinica 33, 687-690], in which the enzyme dimer binds to two tRNA(Trp) mole...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 117 3  شماره 

صفحات  -

تاریخ انتشار 1974